630 (17-4) PRECIPITATION HARDENING STAINLESS STEEL BAR

630 is a 17-4 PH martensitic precipitation hardening stainless steel with a unique combination of high strength and good corrosive resistance. Supplied in either the H1075 (H580) aged condition with a tensile strength of 1000 Mpa minimum (HB 311 min.), or the H1150 (H620) double aged condition with a tensile strength of 930 Mpa minimum (HB 277 min.). It is characterised by high tensile strength and high yield strength obtained by solution annealing, followed by a single or double low temperature (precipitation) age hardening treatment. Coupled with a corosion resistance comparable to 304 austenitic stainless steel in many corrosive environments.630 in the H1075 (H580) aged condition can be re-aged if necessary at a higher temperature simply by heating at the required temperature for the required duration.630 in the H1075 (H580) And H1150 (H620) aged condition, can also be re-aged at a lower temperature by re-solution annealing, followed by age hardening at the required duration.It is used extensively by the Marine, Aerospace, Chemical, Petrochemical, Food Processing, Paper and general metalwork industries. Here it is employed for applications such as: Pump Shafts, Aircraft Fittings, Valve Stems, Hydraulic Fittings, Studs, Bushings, Screws, Fasteners, Couplings, Wear rings, Rollers and Food Handling Equipment etc..

Material Magnetic in all conditions.

Colour Code		Stocked Sizes							
Salmon Stu (Bar end)		Stocked Sizes	tked Sizes 15.88 mm to 304.8 mm diameter.						
		Bar Finish							
		Peeled, Cold Drawn, Turned and Centreless Ground.							
Related Spe	cificati	ons							
Australia		AS 2837-1986-630	\$ 2837-1986-630						
		W.Nr 1.4542 X5CrNiCuNb17 4 W.Nr 1.4548 X5CrNiCuNb 17	Nr 1.4542 X5CrNiCuNb17 4 Nr 1.4548 X5CrNiCuNb 17 4 4						
Japan JIS		G4303 SuS 630							
AS		ISI 630 AISI S17400 STM A564/A564M-99-630 AE J467 17-4 PH NS S17400							
Chemical Co	mposit	ion							
	Min. %	Max %							
Carbon		0.07							
Silicon		1.00							
Manganese		1.00							
Nickel	3.00	5.00							
Chromium	15.00	17.50							
Copper	3.00	5.00							
Niobium	0.15	0.45							
Phosphorous		0.04							
Sulphur		0.03							

Mechanical Test Requi *Condition		A	H900	H925	H1025	H1075	H1100	H1150	H1150M	H1150D (H620D)	
			(H480)	(H495)	(H550)	(H580)	(H595)	(H620)	(H620M)		
Ruling Section			Up to 200 mm	Up to 200 mm			Up to 200 mm				
UTS Mpa (Min	1)		1310	1170	1070	1000	965	930	795	860	
Yield Mpa (Min)			1170	1070	1000	860	795	725	502	725	
Elongation % (Min)	in 50mm	mm 10 10 12 13		13	14	16	18	16			
Hardness	Rc	38 Max	40	38	35	32	31	28	24	24	33 Max
	BHN	363 Max	388	375	331	311	302	277	255	255	331 Max
Impact Charpy - V	ft/lbs (Min)			5	15	20	25	30	55	30	
	Joules (Min)			6.8	20	27	34	41	75	41	
Typical Mech	anical Pro	perties - A	At Room 1	Temperati	ure						
*Condition		A	H900 (H480)	H925 (H495)	H1025 (H550)	H1075 (H580)	H1100 (H595)	H1150 (H620)	H1150M (H620M)	H1150 (H620D)	
UTS Mpa		1100	1375	1310	1170	1140	1035	1000	860	950	
Yield Mpa	ld Mpa		1275	1205	1140	1035	930	860	600	800	
Elongation %	in 50mm	15	14	14	15	16	17	19	22	20	
Hardness	Rc	36	44	42	38	36	35	33	27	31	
	BHN	340	420	390	350	340	330	310	275	295	
Impact	ft/lbs	30	15	25	35	40	45	50	100	90	
Charpy - V	Joules	40	20	34	47	54	61	68	135	120	
*Refer Age Har	rdening ten	nperature t	table								
Low Tempera	ture Prop	erties									
Retains relative	ely good du	ictility at s	ub zero ter	nperatures	, with imp	act proper	ties greatly	y improved	at higher age	eing tempe	ratures:-
Typical sub z	ero charp	y V-notch	impact p	roperties							
Test	°F	10	-40	-112	-148	-320					
Temperature	°C	-12	-40	-80	-100	-196	-196				
Impact Strength	H925 ft-lb	16	9	5	5	3					
	(H495) J	22	12	7	7	4	4				
	H1025 ft - lb	58	40	15	12	4					
	(H550) J	79	54	20	16	6					
	-										
	, H1150 ft - lb (H620)	93 126	76 103	48 65	37 50	6 8					

Cold Working

Cold bending etc. will be limited by the high yield strength in all conditions.

Corrosion Resistance

Superior to the martensitic stainless range in all conditions, and equal to 302 or 304 austenitic stainless grades in most environments.For optimum corrosion resistance, surfaces must be free of scale and foreign particles. Finished parts should be passivated.

Forging

Heat uniformly to 2150/2200°F (1177/1204°C) - Hold for 1 hour at temperature prior to commencing forging.Do not forge below 1850°F (1010°C). Finished forgings should be cooled in air to below 90°F (32°C) prior to further processing in order to obtain optimum grain size and mechanical properties.Finally forgings will require to be solution annealed prior to age hardening as required.

Heat Treatment

Solution Annealed - Condition A

Heat to 1900 +/- 25°F (1040 +/- 15°C) - *Hold for 30 MinutesSections up to 75 mm - <u>Oil Quench To Below 90°F (32°C)</u> Sections over 75mm - <u>Air Cool To Below 90°F (32°C)</u>*Actual holding time should be long enough to ensure that the part is heated thoroughly through out its section

Age Hardening

Material in the solution annealed condition may be age hardened as follows:-*Denotes Double Overaged

	, ,					3					
Condition		H900 (H480)	H925 (H495)	H1025 (H550)	H1075 (H580)	H1100 (H595)	H1150 (H620)	H1150M (H620M)*	Plus	H1150D (H620D)*	Plus
Heat to	±15°F	900°F	925 °F	1025°F	1075° F	1100°F	1150°F	1400°F	1150°F	1150°F	1150°F
	±9°C	480°C	495° C	550°C	580°C	595°C	620°C	760° C	620°C	620°C	620°C
Hold for Hour	S	1	4	4	4	4	4	2	4	4	4
Cool to Below 90°F (32°C)		Air	Air	Air	Air	Air	Air	Air	Air	Air	Air

Notes on Heat Treatment And It's Effect On Structure - Corrosion Resistance Etc

The martensitic transformation temperature range for this grade is:-

M _s -	270°F	(132°C)				
M _f -	90°F	(32°C)				

Therefore to ensure complete transformation to martensite, it is most important that parts are always cooled to below 90°F (32°C) within 24 hours following Solution Annealing and before Age Hardening Treatment which should also be followed by an air cool to below 90°F (32°C).

The age hardening tempers the martensite resulting in an improvement in toughness. The higher the ageing temperature the more refined the martensite leading to greater ductility but slightly lower strength.

N.B. Temperature control is critical during age hardening and any variations outside the given range could lead to less than satisfactory results.

In the solution annealed condition resistance to stress corrosion cracking is low - improving at age hardening temperatures from 1025°F (550°C) upwards to a maximum at 1150°F (620°C) double aged.

Dimensional Changes During Heat Treatment

Age hardening results in a slight dimensional contraction as follows:-Condition A to condition H900 (H480) - contraction 0.0004/0.0006 M/M Condition A to condition H1150 (H620) - contraction 0.0009/0.0012 M/M

Machining

Machinability in the solution annealed condition is similar to 302 and 304 austenitic stainless steel grades. Machinability in the H900 (H480) condition is limited, improving as the age hardening temperature is increased to optimum machinability similar to 304 austenitic stainless steel grade in the H1150 (H620) condition.

Removing Heat Tint

The heat tint formed during age hardening, whilst having little effect on corrosion resistance, may be removed when required for appearance purposes by pickling or electro polishing.

Grinding and Polishing

440C in the hardened and tempered condition requires care with finish grinding and polishing to avoid overheating as this can lower the hardness and corrosion resistance.

Elevated Temperature Use

Excellent oxidation resistance up to 1100°F (540°C). Exposure to temperature range 600 - 900°F (290 - 480°C) long term may result in reduced toughness but this can sometimes be minimilized by using higher ageing temperatures. As a general guide for short term exposure at elevated temperatures the ageing temperature should be at least 50°F (28°C) above the working temperature.

Welding

May be welded satisfactorily by shielded fusion and resistance welded processes, however oxyacetylene welding is not recommended due to the posibility of carbon pick up Filler metal when required should be similar to the parent metal if strength is important otherwise standard austenitic stainless filler wire 308L may be satisfactory. Pre-heating is not generally required. Welding in the solution annealed condition may be carried out satisfactorily, however welding in the H1150 (H620) condition reduces the effects of high welding stresses. Following welding in the solution annealed condition, parts can be directly age hardened as required, however those in the H1150 (H620) condition should be re-solution annealed and then age hardened as required.

Interlloy believes the information provided is accurate and reliable. However no warranty of accuracy, completeness or reliability is given, nor will any responsibility be taken for errors or omissions.

316L due to its low carbon content has greater resistance to intergranular corrosion than all the austenitic stainless steel grades except 304L grade and 321 titanium stabilized grade.